
Getting the Most out of HTC
with Workflows

Peter van Heusden pvh@sanbi.ac.za
South African National Bioinformatics Institute

adapted from slides of
Christina Koch ckoch5@wisc.edu

mailto:pvh@sanbi.ac.za
mailto:ckoch5@wisc.edu

Why are we here?

2

Why are we here?

3

To do SCIENCE!!!

• A lot of science is best-done
with computing – sometimes,
LOTS of computing

• Science needs to be
reproducible & sustainable

• And, we’d really like science
to happen fast(er)

GETTING THE MOST OUT OF
COMPUTING (FOR RESEARCH)

4

TO

From

5

Scaling up computing

TO

Computing types

• Our challenge: how to make use of
computers working together to tackle
large compute tasks...

6

high-performance (e.g.MPI)high-throughput

Two Strategies

Cloud
Focus: Service many user
groups by providing generic
computing
Skills focus: systems
engineering to create virtual
infrastructure, compose
multiple component services

HPC Cluster
• Focus: Service

specialised computing
groups working on
computationally
challenging problems

• Skills focus: research
software engineering and
parallel algorithms

7

The Research Computing Stack

8Stack idea taken from Konrad Hinsen’s blog

http://blog.khinsen.net/posts/2017/01/13/sustainable-software-and-reproducible-research-dealing-with-software-collapse

Research Computing Roles

9

Two Architectures

High Throughput
Focus: Workflows with many
small, largely independent
compute tasks
Optimize: throughput, or
time from submission to
overall completion

High Performance
• Focus: Workflows with

large, highly coupled
tasks

• Optimize: individual tasks,
software, communication
between processes

10

Making Good Choices

• How do you choose the best approach?
• Guiding question:

Is your problem “HTC-able”?

11

Typical HTC Problems

• batches of similar program runs (>10)
• “loops” over independent tasks
• others you might not think of …
− programs/functions that

▪ process files that are already separate
▪ process columns or rows, separately
▪ iterate over a parameter space

− a lot of programs/functions that use
multiple CPUs on the same server
Ultimately: Can you break it up?

12

What is not HTC?

• fewer numbers of jobs
• jobs individually requiring significant

resources
− RAM, Data/Disk, # CPUs, time
(though, “significant” depends on the HTC
compute system you use)

• restrictive licensing

13

The Real World

• However, it’s not just
about finding the right
computing approach to
your problem.

• These approaches will be
most effective if they’re
running on appropriate
compute systems.

14

The Real World

• Not all compute systems are created
equal.

• Two questions to ask:
What resources are available to me?
Which one is the best match for the

kind of computing I want to do?

15

Campus Resources

• Start with your local campus compute system
• Some considerations:
− Who has access? Are there allocations?
− What kind of system? What is it optimized for?

• An HPC cluster may not handle lots of jobs well, in
the same way that an HTC system has limited
multicore capabilities - be aware of how a system
matches/doesn’t match your computation strategy.

• Ask questions! Be a good citizen!
• If local resources are limited, explore other options.

16

Beyond your campus

• Hosted Resources

• Clouds and clusters
− Commercial cloud

systems
− Research clouds and

clusters

17

The payoff

• HTC is, beyond everything, scalable
− If you can run 10 jobs, you can run 10,000,

maybe even 10 million
• Worth pursuing the right kind of

resources (if you can) for the right kind
of problem.

18

tim
e

n processors

GETTING THE MOST OUT OF
HTC

19

Key HTC Tactics

20

1. Increase Overall Throughput
2. Utilize Resources Efficiently!
3. Bring Dependencies With You
4. Scale Gradually, Testing Generously
5. Automate As Many Steps As Possible

Throughput, revisited

• In HTC, we optimize throughput: time
from submission to overall completion

• Instead of making individual jobs as fast
as possible, optimize how long it takes
for all jobs to finish.

• Time to completion includes
engineering time

• We do this by breaking large processes
into smaller pieces and re-using
components

21

Breaking up is hard to do…

• Ideally into parallel (separate) jobs
− reduced job requirements = more matches
− not always easy or possible

• Strategies
− break HTC-able steps out of a single program
− break up loops
− break up input

• Use self-checkpointing if jobs are too long
− Often not supported by individual applications

22

Batching (Merging) is easy

• A single job can
− execute multiple independent tasks
− execute multiple short, sequential steps
− avoid transfer of intermediate files

• Use scripts!
− need adequate error reporting for each

“step”
− easily handle multiple commands and

arguments

23

Key HTC Tactics

24

1. Increase Overall Throughput
2. Utilize Resources Efficiently!
3. Bring Dependencies With You
4. Scale Gradually, Testing Generously
5. Automate As Many Steps As Possible

Know and Optimize Job Use of
Resources!

• CPUs (“1” is best for matching)
▪ restrict, if necessary/possible
▪ software that uses all available CPUs is BAD!

• CPU Time
> ~5 min, < ~1 day; Ideal: 1-2 hours

• RAM (not always easily modified)

• Disk per-job (execute) and in-total (submit)

• Network Bandwidth
▪ minimize transfer: filter/trim/delete, compress

25

Key HTC Tactics

26

1. Increase Overall Throughput
2. Utilize Resources Efficiently!
3. Bring Dependencies With You
4. Scale Gradually, Testing Generously
5. Automate As Many Steps As Possible

Bring What with You?

27

• Software
○ Dependency management

• Data and other input files
○ Have a Research Data

Management strategy
○ Record parameters

■ do you use “reference data”?
■ including random number seeds
■ note data provenance

Each Workflow Step Has a
Wrapper

28

• Before task execution
− transfer/prepare files and directories
− setup/configure software environment and other

dependencies
• Task execution
− prepare complex commands and arguments
− batch together many ‘small’ tasks

• After task execution
− filter/combine/compress files and directories
− check for and report on errors
− clean up temporary files

Software Dependency
Management

Image from Grüning et al 2018 “Practical Computational Reproducibility in the Life Sciences”

29

https://www.cell.com/cell-systems/fulltext/S2405-4712(18)30140-6

Key HTC Tactics

30

1. Increase Overall Throughput
2. Utilize Resources Efficiently!
3. Bring Dependencies With You
4. Scale Gradually, Testing Generously
5. Automate As Many Steps As Possible

Testing, testing, testing!

• Allows you to optimize resource use
• Just because it worked for 10 jobs,

doesn’t mean it will work for 10,000 jobs
(scaling issues)
− Data transfer (in and out)
− Discover site-specific problems

31

Key HTC Tactics

32

1. Increase Overall Throughput
2. Utilize Resources Efficiently!
3. Bring Dependencies With You
4. Scale Gradually, Testing Generously
5. Automate As Many Steps As Possible

What to Automate?

• Submitting many jobs
• Writing submit files using scripts
• Running a series of jobs, or workflow

33

What is a workflow?

34

• Steps
• Connections
• (Metadata)

• A series of ordered steps

We workflows

• non-computing “workflows”
are all around you, especially
in science
− instrument setup
− experimental procedures and

protocols

35

• when planned/documented, workflows help with:
− organizing and managing processes
− saving time with automation
− objectivity, reliability, and reproducibility
 (THE TENETS OF GOOD SCIENCE!)

process ’99’

Scientific Workflow Management

36

data prep/split

process ‘0’

combine, assess
results

. . .

Automating workflows can
save you time...

37http://xkcd.com/1205/

… but there are even more
benefits of automating workflows

38

• Reproducibility
• Building knowledge and experience
• New ability to imagine greater scale,

functionality, possibilities, and better
SCIENCE!!

GETTING THE MOST OUT OF
WORKFLOWS, PART 1

39

From schematics…

40

… to the real world

41

Building a Good Workflow

1. Draw out the general workflow
2. Define details (test ‘pieces’ with HTCondor jobs)

− divide or consolidate ‘pieces’
− determine resource requirements
− identify steps to be automated or checked

3. Build it modularly; test and optimize
4. Scale-up gradually
5. Make it work consistently
6. What more can you automate or error-check?
7. Publish, share and re-use

(And remember to document!)
42

Workflow, version 1

43

data prep
(minutes)

processing
(days)

assess results
(minutes)

process ’99’

Workflow, version 2 (HTC)

44

data prep/split

process ‘0’

combine, assess
results

. . .

Building a Good Workflow

1. Draw out the general workflow
2. Define details (test ‘pieces’: steps / scripts)

− divide or consolidate ‘pieces’
− determine resource requirements
− identify steps to be automated or checked

3. Build it modularly; test and optimize
4. Scale-up gradually
5. Make it work consistently
6. What more can you automate or error-check?

(And remember to document!)

45

Determine Resource Usage

• Run locally first
• Then get one job running remotely

▪ (on execute machine, not submit machine)!
▪ get the logistics correct! (job submission, file

and software setup, etc.)

• Once working, run a couple of times
− If big variance in resource needs, should

you take the…
Average? Median? Worst case?

46

process ‘99’
(filter output)

End Up with This

47

(special transfer)
file prep and split

(POST-RETRY)

process ‘0’
(filter output)

combine,
transform results

(POST-RETRY)

. . .

 1 GB RAM
 2 GB Disk
 1.5 hours

100 MB RAM
500 MB Disk
 40 min
(each)

300 MB RAM
 1 GB Disk
 15 min

(PRE)
(POST-RETRY)(POST-RETRY)

Building a Good Workflow

1. Draw out the general workflow
2. Define details (test ‘pieces’ with HTCondor jobs)

− divide or consolidate ‘pieces’
− determine resource requirements
− identify steps to be automated or checked

3. Build it modularly; test and optimize
4. Scale-up gradually
5. Make it work consistently
6. What more can you automate or error-check?

(And remember to document!)

48

process ‘99’
(filter output)

To Get Here …

49

(special transfer)
file prep and split

(POST-RETRY)

process ‘0’
(filter output)

combine,
transform results

(POST-RETRY)

. . .

 1 GB RAM
 2 GB Disk
 1.5 hours

100 MB RAM
500 MB Disk
 40 min
(each)

300 MB RAM
 1 GB Disk
 15 min

(PRE)
(POST-RETRY)(POST-RETRY)

process ‘99’
(filter output)

Start Here

50

process ‘0’
(filter output) . . .

process ‘99’
(filter output)

Add a Step

51

process ‘0’
(filter output)

combine, assess
results

. . .

process ‘99’
(filter output)

And Another Step

52

 prep conditions
and/or split data

process ‘0’
(filter output)

combine, assess
results

. . .

End Up With This?

53

DAT
A

 ?

Building a Good Workflow

1. Draw out the general workflow
2. Define details (test ‘pieces’ with HTCondor jobs)

− divide or consolidate ‘pieces’
− determine resource requirements
− identify steps to be automated or checked

3. Build it modularly; test and optimize
4. Scale-up gradually
5. Make it work consistently
6. What more can you automate or error-check?

(And remember to document!)

54

Scaling Workflows

• Your (“small”) DAG runs! Now what?
− Need to make it run full scale

55

to the
moon!

Scaling Up: Rules of Thumb

• CPU (single-threaded)
− Best jobs run between 10 min and 10 hrs

(Upper limit somewhat soft)

• Data (disk and network)
− What is the balloon factor of your

workflow?
− Know when you are moving data and how

to minimise it
• Memory
− How much RAM / core do you have?

56

Testing, Testing, 1-2-3 …

• ALWAYS test a subset after making
changes
− How big of a change needs retesting?

• Scale up gradually

• Avoid making problems for others (and for
yourself)

57

Scaling Up - Things to Think About

• More jobs:
− most submit queues will falter beyond ~10,000

total jobs
• Larger files:
− more disk space, perhaps more memory
− potentially more transfer and compute time

Be kind to your submit and execute nodes
and to fellow users!

58

Building a Good Workflow

1. Draw out the general workflow
2. Define details (test ‘pieces’ with HTCondor jobs)

− divide or consolidate ‘pieces’
− determine resource requirements
− identify steps to be automated or checked

3. Build it modularly; test and optimize
4. Scale-up gradually
5. Make it work consistently
6. What more can you automate or error-check?

(And remember to document!)

59

Robust Workflows

• Your workflow runs at scale! Now what?
− Need to make it run everywhere, everytime
− Need to make it run unattended
− Need to make it run when someone else tries

60

Make It Run Everywhere

• What does the computing
environment have?
− Prepare for very little

• Bring as much as possible
with you, including:
− the executable you need
− the software it depends on
− data dependencies??

61

The Spectrum

• Laptop (1 machine)
− You control everything!

• Local cluster (<100 - 1000 cores)
− You can ask an admin nicely

• Cloud (core you pay for)
− Be prepared to build your own cluster

62

Make It Work Everytime

• What could possibly go wrong?
− Eviction
− Non-existent
 dependencies
− File corruption
− Performance surprises

▪ Network
▪ Disk
▪…

− Maybe even a bug in your code
63

Make It Run(-able) for Someone
Else

• Automation is a step towards making
your research reproducible by someone
else
− Work hard to make this happen.
− It’s their throughput, too.

• Can benefit those who want to do
similar work

64

Building a Good Workflow

1. Draw out the general workflow
2. Define details (test ‘pieces’ with HTCondor jobs)

− divide or consolidate ‘pieces’
− determine resource requirements
− identify steps to be automated or checked

3. Build it modularly; test and optimize
4. Scale-up gradually
5. Make it work consistently
6. What more can you automate or error-check?

(And remember to document!)

65

Automate All The Things?

• Well, not really, but kind of …
• Really: What is the minimal number of

manual steps necessary?
even 1 might be too many; zero is perfect!

• Consider what you get out of automation
− time savings (including less ‘babysitting’ time)
− reliability and reproducibility

66

Automation Trade-offs

67http://xkcd.com/1205/

68

Make It Work Unattended

• Remember the ultimate goal:
Automation! Time savings!

• Potential things to automate:
− Data collection
− Data preparation and staging
− Submission
− Analysis and verification
− Workflow testing

69

Building a Good Workflow

1. Draw out the general workflow
2. Define details (test ‘pieces’ with HTCondor jobs)

− divide or consolidate ‘pieces’
− determine resource requirements
− identify steps to be automated or checked

3. Build it modularly; test and optimize
4. Scale-up gradually
5. Make it work consistently
6. What more can you automate or error-check?

(And remember to document!)

70

Documentation at Multiple Levels

• In job files: comment lines
− submit files, wrapper scripts, executables

• In README files
− describe file purposes
− define overall workflow, justifications

• In a document!
− draw the workflow, explain the big picture

71

PARTING THOUGHTS

72

Getting Research Done

• End goal: getting the research done
• Hopefully you now have the tools to get

the most out of:
− Computing: which approach and set of

resources suit your problem?
− High Throughput computing: optimize

throughput, use portable data and software
− Workflows: test, automate and scale

73

